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The norsesquiterpene (-)-khusimone, a minor but olfactively 
interesting constituent of vetiver oil,1 has been shown to possess 
structure 1. Its complex dimethylmethylenetricyclo-

Scheme 1° 
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[(6.2.1.01,5)undecane skeleton, common to the sesquiterpenes 
zizanoic acid, epizizanoic acid, khusimol, and zizaene2 remains 
a fascinating challenge to organic synthesis.3 Apart from deg­
radations of natural zizanoic acid to (-)-l4 two imaginative but 
nonstereoselective total syntheses of khusimone have been ac­
complished, by Buchi5 and Chan.6 Particular difficulties thereby 
encountered concerned the relative configuration C(5)-C(8) as 
well as the positional control over the sterically encumbered 
exo-methylene group. We describe here a direct, regio- and 
stereocontrolled total synthesis of (±)-khusimone. In the key step 
we envisaged to close the bond C(7)-C(8) with concomitant 
generation of the methylene group by using the methodology 
presented in the foregoing communication7 (Scheme I). 

Starting from cyclopentenone (2) conjugate addition of the 
dienolate derived from 3,3-dimethylacrylate (3) coupled with 
enolate trapping by alkylation with allyl bromide (4) furnished 
directly the 2,3-disubstituted cyclopentanone 58'9 in 50% yield. 
Accordingly, all but one of the carbon atoms of 1 have been aligned 
in a single synthetic operation.12 5 was converted to the key 
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the assigned structure. 
(9) 5 has been assigned the trans configuration in analogy to the stereo­

chemical outcome of the 1,4-addition-alkylation sequence using cyclo­
pentenone and organocuprates10 or 5-stabilized organolithium reagents,11 as 
well as accounting for the smooth base-induced cis —• trans isomerization of 
2,3-disubstituted cyclopentanones,10 see also ref 12. 
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" All reactions were carried out under argon. Key: (a) (i) 3 + 
LDA (1 equiv), THF, - 7 8 0C, 10 min, (ii) rapid addition of 2 
(1.05 equiv), slow addition of the resulting solution over 1.5 h 
to 4 (10 equiv) in 1:2 HMPA-THF, - 4 0 0C (50%); (b) ethylene 
glycol (10 equiv), TsOH (0.13 equiv), C6H6, reflux, 4 h (97%); 
(c) 1 N NaOEt in EtOH, 60 0C, 4 h (74%); (d) LiAlH4 (2 equiv), 
Et2O, 0 0C, 4 h (92%); (e) (i) MsCl (2 equiv), pyridine (2 equiv), 
0 0C, 2.5 h, (ii) addition of excess 10% aqueous LiCl, 0 0C, 5 min, 
(iii) workup with 1 N HCl-ether, 0 0C (51%); (f) (i) slow addition 
over 1 h of 6 in THF to a stirred suspension of Mg powder (Merck, 
3 equiv) in THF, room temperature, (ii) closed Carius tube, 60 °C, 
17 h, (iii) passing excess CO2 into solution, - 1 0 °C, 5 min (82%); 
(g) LiAlH4 (2 equiv), THF, 0 "-+ 20 0C (92%); (h), (i) MsCl (1.2 
equiv), NEt3 (1.5 equiv), CH 2Cl 2 , -10 ->0°C, 5 min, (ii) 
stirring with 1 N aqueous HCl-Et2O, room temperature, 15 h 
(93%), (i) f-BuOK (1.1 equiv), f-BuOH/C6H6 (1:6) room 
temperature, 10 min (98%). 

precursor 68 by successive protection of the carbonyl group as an 
ethylene acetal,8 EtONa-induced olefin migration, reduction of 
the conjugated ester8 with LiAlH4 , and treatment of the allylic 
alcohol8 with MsCl, Py, and LiCl. The unstable allyl chloride 
6, purified by rapid filtration through silica gel, furnished smoothly 
the Grignard reagent 7 on slow addition to a stirred suspension 
of commercially available magnesium powder (Merck) in T H F . 
Heating the resulting 0.6 N solution of 7 at 60 0 C for 17 h in 
a closed Carius tube followed by trapping the cyclized organo-
magnesium chloride 8 with CO 2 at - 1 0 0 C furnished, after 
crystallization (ether-pentane), the carboxylic acid 98 in high 
overall yield (mp 124-125 0 C , 82% from 6). No isomer of 9 could 
be found in the mother liquor (1H N M R , GC1 3) . Whereas the 
unidirectional nature of the process 7 - » 8 agrees with our previous 

(13) The mother liquor obtained after crystallization of 9 was esterified 
(CH2N2). GC comparison (capillary column 24 m, OV 101, 220 0C, co-in­
jection) with the ester prepared from crystalline 9 proved the absence of any 
isomer. Furthermore, quenching of 8 with aqueous NH4Cl gave a crude 
hydrocarbon that exhibited a single peak in the GC (glass column, 3 mm i.d. 
X 3 m, 5% SE 30 on Chromosorb W, 170 0C). 
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results,7 its virtually quantitative stereoselectivity is particularly 
noteworthy. Assuming kinetic stereoselection the alternative 
transition states A and B have been examined. Indeed, B shows 

L2MQ-

H"tY 
variant, 15'-nor-18,19-dihydro-2,3-oxidosqualene (1) was inves­
tigated. Results summarized herein reveal the final product to 
be tricycle 2, presumably generated by hydrogen transfer from 
the side chain to the C ring of the evolving tricyclic intermediate. 

Coupling of trans-bromide 32 and trans,trans-sulfide 42 con-

a boat conformation of the developing cyclohexane, causing severe 
flagpole repulsion of one C(7) methyl and the C(I) hydrogen, 
whereas the evolving chair in A is perfectly attainable. We thus 
predicted A to be favored over B, which entails the desired cis 
disposition of H-C(5) and H-C(8) in 8. Unambiguous evidence 
for this stereochemical assignment was provided by the trans­
formation of 9 into (±)-khusimone as follows. Reduction of the 
carboxylic acid 9 with LiAlH4, mesylation of the primary alcohol8 

(MsCl, NEt3), and subsequent acetal cleavage (aqueous HCl, 
ether) furnished after crystallization the ketomesylate 10s (mp 
107.5-108.5 0C, ether-pentane, 86% yield from 9). Finally, 
intramolecular alkylation of 10 by brief exposure to /-BuOK, 
J-BuOH, and C6H6 furnished after sublimation (70-80 0C (bath) 
(0.04 torr)) pure (i)-khusimone (I;14 mp 72.5-73.5 0C, 98% 
yield), identified by comparison with authentic (-)-l (GC,15 IR, 
1H NMR, 13C NMR, and MS). In summary, (i)-khusimone 
was obtained from cyclopentenone by a sequence of nine synthetic 
operations in 11% overall yield. This strategic application of the 
remarkably regio- and stereoselective "magnesium-ene" reaction 
7 -* 8 exemplifies the potential value of this method in synthesis. 
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(14) No trace of epikhusimone was detected (1H NMR) in the crude 
cyclization product. 

(15) GC comparison of (±)-l with (-)-l was carried out by co-injection 
using a 24-m capillary column, OV 101, 220 0C. 
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In an endeavor to probe the rigidly enzyme controlled1 chemistry 
of ring C formation during lanosterol biosynthesis, the action of 
2,3-oxidoxqualene lanosterol cyclase on a particular substrate 

(1) van Tamelen, E. E. Int. Congr. Pure Appl. Chem., 23rd, 1971, 5, 85. 
van Tamelen, E. E.; Willett, J.; Schwartz, M.; Nadeau, R. J. Am. Chem. Soc. 
1966, 88, 5937. 
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situtes the integral part of the oxide 1 synthesis, accomplished 
by initial conversion of 4 to its anion with H-C4H9Li followed by 
addition of 3 (THF, -78 0C — room temperature). The resulting 
polyolefinic thioether 5 (69% yield) was then subjected to the 
action of Li/C2H5NH2 at -78 0C, yielding (66%) the acetal 6. 
Tritium labeling was carried out by quantitative hydrolysis of the 
acetal (3% aqueous HC104/THF, 40 0C) to the parent aldehyde 
and exposure of the latter to THF/3H20 (1 Ci/mL) to which had 
been added PCl5. On treatment with (C6H5)2SC(CH3)2 (THF, 
-78 0C), the radiolabeled aldehyde was transformed (70%) into 
epoxide [4-3H]I, purified by prep TLC (specific 3H activity 6.77 
X 10" dpm//*g). 

The enzymic cyclization was carried out by means of rabbit 
liver cyclase, as previously described.3 Incubation of 1 (2.20 mg, 
14.9 X 107 dpm) at 37 0C for 60 min with a clarified (10.5 X 
104g supernatant) enzyme preparation obtained from the mi­
crosomal fraction, followed by denaturization with 1 N methanolic 
KOH and then ether extraction, gave total product representing 
88% recovery of radioactivity. Appropriate boiled controls were 
carried out. After prep TLC, there were isolated starting material 
(81%), presumed 2,3-glycol (8%), and a sterol fraction (7%: 2, 
.Ry 0.28; lanosterol, Rf0.3l), which was purified by HPLC (ra­
dioactivity-based percentages of total enzymic product). 

High-resolution mass (M+ 414.3833) and time-averaged 360-
MHz NMR (benzene-rf6) spectra indicated that the enzymic 
product is a polycycle with the same elementary composition as 
oxide 1 and having an equatorial C-3 hydroxyl (5 2.98-3.11), five 
methyls on saturated carbon (0.82-1.06), an isopropylidene unit 
(1.63, 1.72), and a disubstituted double bond (5.33-5.42). Hy-
drogenation (Pd/C, EtOAc) afforded a tetrahydro product (m/e 
418). In order to locate the nonterminal site of unsaturation, 
oxidative olefin cleavage was carried out with NaI04/Os04 
(dioxane/H20; 25 0C). High-resolution mass (M+ - H2O 
288.2455) and NMR spectra revealed the major cleavage product 
to be a C20H34O2 aldehydro alcohol, resulting from loss of a C9 
side chain fragment. In confirmation of this assignment, NaBH4 

R'O AcO' 

7 R = CHO, R'=H 
J R = CH2OAc, R' = Ac 

,9 R,R ' = 0 

[Q R, R' = CHCO2Et 

JJ R = H, R^CH2CH2OH 

(2) Synthesis to be described elsewhere. 
(3) van Tamelen, E. E.; Hopla, R. E. J. Am. Chem. Soc. 1979,101, 6112. 
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